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1 Introduction

In this document estimation methods implemented by the nFIESTA soft-
ware are described. These methods were used within the Diabolo task T2.3.1
case study which explored possible effects of using selected Copernicus re-
mote sensing products (Forest Type and Tree Cover Density maps, version
2012) as a source of auxiliary information to improve accuracy of biomass
estimates. The case study concerned four European countries - Czech Re-
public, France, Germany and Switzerland.

In the second chapter the attention is paid to the Horvitz-Thompson
theorem for continuous populations (HTC) [Cordy, 1993]. The use of this
theorem can be considered as an innovative part of the task T2.3.1 of the
Diabolo project and also the nFIESTA approach. It addresses theoretical
issues arising from the integration of NFI (National Forest Inventory) plot
data collected by many countries which use different sampling designs. This
integration is necessary in order to produce estimates of forest attributes for
arbitrary study areas possibly encroaching boundaries between the coun-
tries (or sampling strata). This generic approach can be applied virtually
anywhere i.e. its use is not restricted to Europe only.

A special section on the derivation of so called inclusion (or sampling)
densities follows immediately after the HTC introduction. Inclusion densi-
ties are indispensable for the HTC theorem application. They play the same
role as the inclusion probabilities do in the Horvitz-Thompson theorem for
finite populations i.e. they determine the sampling design itself as well as
statistical properties of the estimators in terms of unbiasedness and preci-
sion (design-based variance). NFIs of particular countries can provide plot
data with relative sampling weights attached. A method how these relative
weights can be translated to inclusion densities has been proposed and im-
plemented in nFIESTA. This method allows for an unbiased estimation of
totals, ratios (of totals) and also their variances. The HTC theorem can
be used for parameter estimation in case of non-uniform sampling designs
e.g. the importance sampling [Gregoire & Valentine, 2008, p. 94], which
was chosen as the nFIESTA’s implicit approximation of any non-uniform
sampling design.

The third chapter describes how target parameters defined as totals of
an attribute over a study area (the estimation cell D) are calculated by
nFIESTA. Estimation cells are arbitrarily shaped regions which are entirely
covered within the union of all sampling strata i.e. D C U;-IzlSj.

The first section of the third chapter is devoted to single-phase estima-
tor(s) which only use data available at sample plots visited during the field
NFTI surveys. Single-phase estimators are a standard solution, which may
be used for a vast number of target parameters. In the section which fol-
lows an implementation of the modified direct estimator as a special class
of GREG (generalised regression estimator) [Rao, 2003, p. 13] is described.



This estimator uses not only data coming from (field) sample plots but also
auxiliary data obtained from an external source. This strategy often leads
to significant improvements of precision.

Depending on user settings (choice of parametrisation area and its re-
lation to the estimation cell) and depending on the presence or absence of
sample plots within the estimation cell itself the nFIESTA implementation
results in an appropriate type of the GREG or the synthetic estimator (no
data in the estimation cell, parametrisation is done in a larger region en-
compassing the estimation cell) [Mandallaz, 2012, p. 10].

The last chapter documents a generic implementation of a ratio estima-
tor which is composed by two total estimators of potentially different type
(single-phase or a kind of GREG using auxiliaries). Technically the two
types can even be combined in the nominator and denominator of the ratio.
However, from the practical point of view, the combinations between the
nominator and denominator should follow certain constraints in order not
to loose to much of the potential precision.

Ratio estimators are very important because many target parameters
can be defined as a ratio of two totals (or means). Mean above ground
biomass per hectare of forest (the exact map of which does not exist) was
considered as one of the target parameters within the T2.3.1 case study.

2 The continuous Horvitz-Thompson Theorem

Cordy [1993] published the Horvitz-Thompson Theorem (HTC) for popu-
lations of a continuum, according to which an unbiased estimator ts of the
total ts of variable y in a sampling stratum & is defined by

; y()

ts ;es m(x)’ (1)
where The symbol y(z) denotes local density of the quantity observed at
point x of sample s of fixed size n, w(z) is the inclusion density at point z
which is an analogy to the inclusion probability when sampling finitely large
populations of discrete objects [p. 355][Cordy, 1993]. The term local density
was introduced by Mandallaz [1991] as a main building block of the infinite
population approach to forest inventory. The infinite sampling approach to
forest inventory was also studied by Eriksson [1995].

Estimator (1) is unbiased if the function y(x) is positive or bounded and,
at the same time, the condition 7(z) > 0 Vz € S is satisfied, (i.e. any point
x of the sampling stratum S can be sampled).

Furthermore if the local density function y(x) is bounded and conditions
w(x) > 0 Ve € S, s ﬁdw < oo and 7(z,2') > 0 Va,2’ € S hold an

unbiased estimator of variance V(fs) can be obtained by using Eq. (2) or
the modified Eq. (3) [Cordy, 1993, p. 357].
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where m(x, ") is a pairwise inclusion density [Cordy, 1993, p. 355].

The variance of the total estimator s can alternatively be expressed
and estimated by using Sen-Yates-Grundy (SYG) formulas [Cordy, 1993,
pp. 358-359]. Although the SYG approach has several advantages it has
not been implemented because of larger computational overhead. Unlike
the SYG the variance calculation according to Eq. (2) or (3) can usually be
performed faster by leaving out all sample locations (plots or clusters) with
zero values of local density.

2.1 HTC and cluster sesigns

Unlike single plot a cluster design allocates a set of sample plots at each
anchor point . The positioning of individual plots of the cluster is deter-
mined by a geometric template (set of positional vectors with respect to the
anchor point). The cluster orientation can be randomized between anchor
points, but usually a fixed orientation is used. Cluster anchor points are
generated within a sampling frame F the definition of which is implicitly
given in terms of the following two conditions:

e At least one plot of any cluster with an anchor point in F is located
in the sampling stratum S C F. This condition is relaxed for designs
with randomly rotated clusters - it suffices if there is an orientation
for which at least one plot derived from the anchor point x € F would
fall into S.

e Each point x within the sampling stratum S can be selected by a plot
pertaining to a cluster with anchor point in F.
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Figure 1: Visualisation of sampling stratum and sampling frame (German NFI).
Sampling stratum is shown as a (dark) gray polygon covered by the sam-
pling frame shown as hatched area encroaching the borders of stratum
up to 150 m (size of the square-like cluster) in south-west and south
direction.

In case of single-plot designs the sampling frame exactly corresponds to
the sampling stratum i.e. we have F = S. Otherwise (S C F, cluster
designs) the sampling frame need to be reconstructed by nFIESTA based
on the geometry of sampling stratum and a geometrical representation of
a cluster (the later also specifies the position of the cluster anchor point).
Figure 1 shows an example of possible relation between sampling stratum
and sampling frame taking the respective cluster geometry into account.

For designs using clusters the HTC theorem shown in the preceding
section has to be reformulated with respect to F (sampling frame) rather
than S (sampling stratum). In fact this is always possible and advantageous.
In case clusters are not used we simply have F = S.

Further adjustments are needed in terms of the local density y(x) which
has to be replaced by the cluster level local density:

k iS\T)Y; \ T
yt(l') _ Zi:l Izé]‘g( )yl( ) (4)

where the (classical plot level) density y;(x) is observed for particular sam-
ple plot denoted by index i, belonging to the cluster established at anchor



point z. The symbol k is used for the nominal (and fixed) number of sample
plots in each cluster pertaining to the given sampling stratum (irrespective
on the number of plots located in the forest, inside or outside F or any other
par of it). The term I;s(x) indicates whether the sample plot i (of a cluster
established at anchor point z) is found (value 1) or not in the sampling
stratum S (value 0).

Notes:

e The position = corresponds to the cluster anchor point i.e. the position
from which the cluster had been constructed. In general the position
of an anchor point does not need to correspond to a plot center.

e The multiplication of local density by I;s(x) is practically not needed,
because plots outside the respective sampling stratum are either not
uploaded to the nFIESTA system or their local densities are zeroed
before the upload (the later option is needed in case of designs with
randomized cluster orientation at each anchor point).

e The local density at cluster level yt(x) is defined in way which differs
from the approach suggested by Mandallaz [2007, p. 65], p. 65] and
considered by Ene et al. [2016, p. 17]. With the definition of cluster
level local density used by nFIESTA the mean spatial densities (per
hectare values) can be estimated as ratios of two total estimators - both
can be single-phase, of the regression type (GREG), or the single-phase
and regression types can be mixed in the nominator and denominator
of the ratio.

2.2 Derivation of inclusion densities

In the estimation system (its database part) a relative sampling weight x(z)
is attached to each combination of panel and sample location x (single plot
or cluster depending on design). These relative weights can be intuitively
understood as a way to express shares on the whole sampling frame area
represented by particular sample locations. If all sample locations within a
panel represent equally large regions a relative weight of one is used for all
of them.

The use of relative weights has been established by the E-Forest system
and NFT data providers from many European countries already got accus-
tomed to this approach. Therefore it is supposed that this practice will be
preserved.

The purpose of this section is to describe how the relative sampling
weights can be transformed into sampling densities compliant to the Horvitz-
Thompson theorem for continuous (infinite) populations (HTC). This is a



crucial step to be able to use this universal theorem for statistical estimations
on the basis of an integrated database of many (not only) European NFIs.

Despite all formulas of this section are given in a form corresponding to
a cluster design, they can be used also for single plot designs noting that
in this case § = F. Complementary information concerning mathematical
definition and properties of the inclusion densities m(x) and m(x,z’) can be
found in [Cordy, 1993, pp. 355-356].

Inclusion densities at sampling frame level

Following Cordy [1993] the inclusion density 7w (z) for any fixed sample size
design is given by

~@) = 3 fi@) )
i=1

where f;(z) is a probability density function defined for each point x in F
(sampling frame, a continuum i.e a bounded set of infinitely many points).
This function describing the stochastic process of selection of the i — th out
of the fixed number of nr sample elements (i.e. points) in F.

The pairwise inclusion density is defined

nr
W(xaml) :szij(x7x,)v (6)
i=1 j#i
where f;;(x,2’) is a joint probability density of selecting a pair of distinct
sample elements ¢ and j simultaneously.

Now, under the (still very generic) assumption that i) all ny sample
points are selected using the same inclusion density function f(z) (i.e no
stratification is used) and that ii) the particular sample points are selected
independently and without replacement, we can write

m(z) = nrf(z), (7)

and

m(z,2') = nr(nF — 1) f(2) f(z'). (8)

Note that because of the independent selection of sample points at positions
z and 2’ we have

fz,a) = f(2)f (). (9)

The probability density function f(z) has the property
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and it can be expressed with respect to a positive and bounded function {(z)
defined in F as it follows

@
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Without any impact on any derivations made here the probability den-

sity f(z) can be redefined using the total area A\(F) of the sampling frame.
Doing so we get

_ (=)
= s -
where c¢ is a constant defined by
_ A
= @ -

In general, the construction of relative sampling weights should fulfill
the condition that the larger the relative weight x(x) the larger the share of
the particular sample point z on the total of {(x) over the whole F. This
can be expressed by following equation

const _ const
nr f(x) [xC(x)de — nF(z)’

where const is a positive constant.

x(z) = (14)

Although they should be known to the respective country providing the
NFI data the total [r((x)dx and values of ((x) are not accessible in the
nFIESTA system. This is why probability density f(x) neither the inclusion
densities (x) and 7(z, ') can be derived from relative weights x(z) based on
Eq. (14). Nevertheless taking the Eq.(12) into account it is obvious that the
previous assumption about relative weights also implies that the larger the
relative weight the larger the representative area 1/m(z) of sample point x
and the larger the share of this representative area on the total sampling
frame area. Therefore we can also write

const const
O = @ NE) ~ enr C) "

Up to the const and c the values of all terms in Eq. (15) are available in
the nFIESTA database and the key probability density f(x) function can
be expressed as it follows

const

1) = @y A

(16)
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The remaining question is how the const should be defined so that the
relative weights according to Eq. (15) and (14) are the same or at least
as close as possible while the probability density f(z) can be evaluated in
practice. We can make a step forward by combining Eqs. (10) and (15) to
get,

const 1
/ff(x)da: = A /F X(x)dx =1, (17)
which implies
1 nrAF)
/f X(x)dx ~ const (18)
and
B {X(x)] ~ const \(F)  const’ (19)

The expected value of the reciprocal relative sampling weights is unknown
in the general case but it can be estimated from the sample!:

(20)

X { 1 ] e X@)ily  nr
This estimator can be put into Eq. (19) which leads to const = Wx, where
the Wr is used for the sum of relative weights over the whole sample. Sub-
stituting Wr into Eq. (16) we get

Wr

x(z) nF A(F)’
and using Egs. (7) and (8) we come to the final expressions for inclusion
densities, which are implemented by nFIESTA:

fz) = (21)

_ W
= @ AF 2
and
N (TL]: - 1) W.%
@) = ) @) g N F) (23)

!According to E-Forest specification of the relative sampling weights
Y owes X(@)y(2)/ >, o, x(x) is an unbiased estimator of the mean of y in F.



Notes:

e For uniform sampling designs (having a constant relative sampling
weight attached to all clusters) Egs. (22) and (23) take the form corre-
sponding to Uniform Random Sampling (URS, both 7(z) and 7 (x, 2”)
are constant over F). The probability density is defined as f(z) =
1/A(F) while for the underlying function we have ((x) = 1 everywhere
within F.

e In case of a non-constant probability density f(z) and the respective
function ((z) we have the so called importance sampling as presented
by [Cordy, 1993, p. 356]. The inclusion densities 7(x) and 7(z, z") also
vary over F.

e Pairwise densities m(x,2’) for sample points z and 2’ belonging to
different sampling strata are not needed because the corresponding
summands of Egs. (2) and (3) are zero in this case. Pairs of sam-
ple points from different strata can be skipped during the variance
calculation.

e Single-phase estimates using densities derived at sampling frame level
are unbiased conditionally on actual sample size in F.

e The sum of separate single-phase estimators for arbitrary but com-
plementary subsets of the whole sampling stratum exactly matches
the estimator for the stratum as a whole. In case of estimators us-
ing auxiliaries the additivity is limited to the intersection of stratum
and parametrisation area Dy (sum of total estimates for complemen-
tary subsets of this intersection exactly matches the estimate for the
intersection itself).

Inclusion densities at estimation cell level

Estimators using the inclusion densities as defined in the preceding section
suffer from variance inflation due to uncontrolled (varying) sample size in the
intersection of particular estimation cell D and sampling stratum A\(F;p) <
A(Fj). The variance increase becomes more pronounced as the relative cell
size with respect to stratum size decreases.

This effects are well known from literature on finite sampling [Sdrndal
et al. , 2003, pp. 283-284, 396-397]. Cordy [1993, p. 361] himself advices to
use inclusion densities derived for particular sample sizes - as an alternative
to unconditional inference admitting that the sample size vary within the
study area (this is also the case of our estimation in cells D C S).

Following the proposition of [Cordy, 1993] inclusion densities can be
defined with respect to the extent of and the sample size in the sampling
frame corresponding to one or the other of the two options:

10



e an intersection Fp of particular stratum S; and estimation cell D

e an intersection F;p, of particular stratum §; and parametrisation
region Dy O D.

The modification of the basic approach described in preceding section con-
sists in the uses of W;p or Wjp, and A(F;p) or A(F;p,) instead of W
and A(F) within Eqs. (22) and (23), where

Wip= Y x(x), (24)

TreSs
Z‘E.FjD

and

Wip, = > x(@). (25)

TES
z€F;p,
By deriving inclusion densities for strata and cell intersections the inflation
of variance due to uncontrolled sample size is ruled out completely (use of
W;p and A(F;p)) or at least potentially reduced (use of W;p, and A(Fjp,)).
Therefore the estimator based on these densities have better statistical prop-
erties (unbiasedness conditional on the sample size in strata and cell inter-
sections). However, this also means that the geographical additivity of totals
is also gone.

Notes:

e This approach makes no sense for strata and cell (or parametrisation
region) intersections in which less than two sampling locations exist. In
such a case inclusion densities have to be derived at the whole stratum
level which may lead to mixed inference within one estimation cell (or
parametrisation region). For some strata and cell intersections we can
have unbiasedness conditional on the number of sample locations at the
whole sampling stratum level, for the rest an unbiasedness conditional
on sample size in the stratum and cell intersection.

e Conditioning on the sample size in F;p makes sense for single-phase
estimators or for the direct GREG estimator if D = D+ i.e. the model
parametrisation is performed using plots from the estimation cell only
(no extended parametrisation area is used). Otherwise inclusion den-
sities are to be derived at the whole sampling frame level or at the
level of Fjp4.

e The areas A\(F;p)) and A(F;p, )) are determined by GIS operations as
part of the configuration of nFTIESTA for the use of particular sampling
strata, estimation cells and parameterisation areas.

11



e nFIESTA can work in both modes i.e. inclusion densities derived at
the whole sampling frame level, or at the F;p or F;p_ level depending
on user preference - additivity of totals versus better statistical prop-
erties of estimators. This is achieved through the user configuration
of particular estimation task.

3 Estimation of totals

This section describes the way how target parameters defined as totals of
an attribute over a study area called cell D are estimated by nFIESTA. The
cells are arbitrarily shaped regions entirely within the union of all sampling
strata i.e. D C U}-] S;. The definitions of sampling strata (inclusing their
geometrical representation by digital maps) as well as plot data belonging
to them are available in nFTESTA.

Obviously some cells may be located completely within one sampling
stratum but often the cells will encroach to several sampling strata. Unlike
the preceding section on the the Horvitz-Thompson theorem the following
part of the document deals with this and also other practical aspects of
estimation for arbitrary cells.

3.1 Single-phase estimation

Single-phase estimators do not use any type of auxiliary information to im-
prove their accuracy (reduce their variance). Most typically such estimators
use data collected on sample plots through a dedicated field survey. Based
on the HT'C theorem (see chapter 2), the single-phase estimator fy of total ¢,
of an attribute y in the estimation cell D is defined by

J
ty = Z Z y:.l:zg)7 (26)
j=1zEs2; J
where the index j is used to iterate over J sampling strata, m;(x) is the
corresponding inclusion density (see section 2.2) and y;;p(x) is the cluster
level local density evaluated for anchor point x belonging to the (terrestrial)
sample so; of stratum S;. The cluster level density itself is given by

M Ls (2)Lip()yi(z
ytjD(iU) _ Dit1 IlSj( k)jI%D( )yi( )’ (27)

where £; is the nominal number of sample plots per each cluster belonging
to the sampling stratum §; , index 7 is used to iterate over all plots of the
cluster established at anchor point x, y;(x) is the plot level local density
on the plot i, I;p(z) is an indicator variable coding whether the position
of sample plot i is within D (1) or not (0), likewise I;s; () is an indica-
tor variable coding whether the plot lies inside stratum S; (1) or not (0).

12



The indicator I;s;(z) is practically not needed because plots outside the
respective sampling stratum are either not uploaded to nFIESTA or their
local densities are zeroed before the upload (the later option is needed in
case of designs with randomized cluster orientation at each anchor point).
Consequently the cluster level local density can be simplified also noting
that within the nFIESTA database the anchor points x themselves identify
the respective sampling strata to which they belong so the use of j index
in yjp(x), mj(z) and mj(z,2’) can be skipped:

S Lp(x)yi(x)
k; ’

yip(z) = (28)

and also the formula for fy can be simplified to

y _ Z ytD (29)

pASED)

where the sum iterates over the sample sy = U}-Izlsgj being a union of
samples from all strata represented in given cell D.

Following the HTC (see chapter 2) the variance of #, can be estimated
by

yep(x)

]gleSQJ [ ﬂ-(l') ]

3 n| T, 2’) — m(z)m (')

leeez po (s )l w(z, o) (@) (@ (30)
r#x’
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which, unlike the Eq. (29), follows the structure of strata in order to speed
up the computation. Knowing that 7(z,2") = 7(x)m(2’) for anchor points z
and 2’ belonging to different strata (a consequence of independence of sam-
ples between strata) the value of the respective terms within the second
(double) summation of Eq. (30) would be zero if z and z’ coming from
different strata entered the calculation.

Notes:

e In nFIESTA a linkage between sample plots and estimation cells as
well as between sample plots and clusters is maintained which simpli-
fies the practical calculation of fy by taking only plots found inside of
particular cell D and clusters and strata corresponding to these plots
(no indicator values are needed for the practical calculation).

13



e Similarly also Eq. (30) is calculated more efficiently by taking only
sample plots found in the estimation cell. All sample plots with lo-
cal density equal to zero are skipped because such zero plots do not
contribute to cluster densities and in addition zero cluster densities do
not contribute to variance estimator according to Eq. (30).

e The formulas of this section are in a form corresponding to cluster
designs. For simple plot designs these formulas can still be used (single
plots are handled as clusters having just one plot i.e. k; = 1).

3.2 Modified direct GREG estimator

This type of estimator(s) uses auxiliary information available and known
anywhere in the estimation cell D as well as in the corresponding parame-
terisation region D+ O D. Conceptually similar estimator called small area
estimator has been proposed by Mandallaz [2007, p. 119].

Under the condition D = D+, i.e. if the parametrisation of the regression
model takes place at the level of the estimation cell itself, the formulas of
this section can be used without any modification. They simply take the
form of the (Generalised) Regression Estimator (GREG) known from the
literature on finite population sampling e.g. [Rao, 2003, p.13] or [Sdrndal
et al. , 2003, p. 225].

In addition the estimators of this section are formulated in a way which
makes it also possible to calculate estimates even for a (potentially small)
geographical domain D that actually does not contain any sample plots (or
tracts). In such a case, the respective formulas (point as well as variance
estimators) take the from corresponding to a synthetic estimator (model
dependent estimation framework).

Modified direct GREG for single-plot designs

Let’s define fymd - the modified direct GREG estimator of a population
total t,, which uses a linear model fitted in an extended parametrization
area Dy 2 D:

fy,md = m; iEg{ID((L’) + (tx — Ex)/[XJ,_Z_FH_A,_X;]_lO}i((Q;))} (31)
rzeD

= > w(@)j(@)y(z) (32)
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ve b,

where the meaning of used symbols is the following:
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D is the estimation cell. A digital map of D is stored in nFIESTA so the
total area of D is exactly known. Although the plot coordinates are not
provided by countries nFISTA has the information whether particular
sample point x lies inside D or not.

D, is the parametrization area. A relation D C D, always holds. In
addition D, is always enclosed within the union of all sampling strata
considered, which means that condition Dy C UF ;S; must also be
fulfilled (S; denotes the i — th of k strata). Parametrisation areas are
defined (manually) by the user of nFIESTA.

so is a subset of points x € D on which field survey has been performed
(the so called second phase sample). In case of wall-to-wall (map-like)
auxiliary data, the first phase sample is a census, so we know the values
of a wall2wall auxiliary variable(s) anywhere in Dy.

x is a particular (dimensionless) sample point x € D4

m(z) is the inclusion density function evaluated at the position of sample
point . Here it is supposed that the definition of inclusion density
changes from stratum to stratum. Moreover, inclusion density is not
necessarily a constant function within particular strata. More on inclu-
sion densities can be found in chapter 2 and particularly in section 2.2.

Ip(x) is a an indicator function coding whether a particular sample point x
belongs to D (Ip(x) =1) or not (Ip(xz) =0).

tx is a column-vector of dimension p x 1 (p corresponds to number of rows)
holding exactly known totals of p auxiliary variables within D.

tx is a column-vector of dimension p x 1 (p corresponds to number of rows)
of single-phase estimates of totals of p auxiliary variables within D,
under the given sampling design defined by 7(z) and 7(x,2’) i.e. single
and pairwise inclusion densities, see chapter 2.

X isapxnp, matrix of p auxiliary variables on np, sample points in D.

I, isannp, xnp, diagonal matrix of sampling weights. All non-diagonal
elements of 11 are equal to zero. Diagonal elements of II correspond
to inverse values of inclusion density (z) at particular sample point
x € D+.

X(x) is apx1 column-vector of p auxiliary variables observed on particular
sample point x (belonging to s and also D).

y(z) is a value of local density function based on field survey data observed
on sample point z € D, . It is supposed, that any potential edge effect
at the plot level has been compensated.

15



o?(x) is the anticipated (error) variance of local density y(x) on partic-
ular sample point denoted by z. In many (practical) cases we can
write 02(z) = 02 i.e. the variance is constant in the whole D+. If this
is the case, terms ¥ and o?(x) can be left out from Eq. (31).

3, isannp, x np, diagonal matrix of weights. All non-diagonal elements
of ¥, are zero wheareas diagonal ones correspond to inverse values
of o2(x).

w(zx) is a sampling weight of particular sample point € D. It is defined
as a reciprocal value of inclusion density m(x).

g(x) is a regression or calibration weight of sample point € D as defined
by Eq. (34).

w(z) is a product of sampling w(z) and regression weight g(z) correspond-
ing to sample point x € D.

The modified direct GREG estimator #,,,4 shown in Eq. (32) is defined
as a sum of products of local densities y(x), sampling weights w(z), and
regression or g-weights g(x) defined by

- A -1 X(z
3e) = Ip(o) + [t~ B X ELX T L (3a)
Using matrix notation fy,md can be expressed by
tAy,md = G+H+Y/ ) (35)

where G is an 1 x np . row-vector of regression weights (np, corresponds
to the number of sample points in D) and Y is an 1 x np, row-vector of
local densities corresponding to the set of sample points in Dy. The vector
of regression weights itself is defined as

Gy =Tp + (bx — &)X DL XL ] X, 3y, (36)

where Ip is an 1 X np, row-vector of indicator variables I p(x) observed on
sample points in D.

Calibration property: When applied to the auxiliary variables defining
the g-weights the Modified direct GREG estimator according to Egs. (31),
(32), (33) and (35) equals the exactly known vector tx of auxiliary totals
over D. This property is derived in an equation that follows:
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t) ma = GHIL X/, (37)
—IpI, X, + (b — &) [X4 =, T, X, ] 'X 2, 0, X, (38)
= 8+ (tx — ) Ty, (39)
=t (40)

Variance of the modified direct GREG: Let’s define empirical resid-
ualsl é(x) as follows

e(x) = y(x) — gp(), (41)

é(z) = y(a) — X'(2) B, (42)

where gp(z) is the empirical prediction and B+ a p X 1 column vector of
regression coefficients estimated in D4 by using

A -1
By =X, 2, 00, X,] X, =, 00, Y, (43)

or

By =Gp, TILY, (44)

where éﬁt + 1s a matrix of dimension p x np,. Using matrix notation,
the 1 x np, vector of residuals E; can be obtained as

E, =Y, X, 3. (45)

Variance of fy,md can be estimated as the variance of single-phase total of
products of g-weights and empirical residuals over the whole parametrization
area:

where
. g(x)e(x) - -
tw,D+ = ;2 W = ;2 w(a:)w(x) = G’+H+E/_~_ (47)
CE€D+ $€D+

The variance V(fw, p.) can be evaluated according to Eq. (30) in section 3.1
by substituting y;p(x) by w(z).
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Justification of the variance estimator: Multiplying both sides of
Eg. (40) by vector of the population (true) regression coefficients B4 we
get

o maBt = thBr =1y, (48)

where ¢, is the true total of population level predictions in D. By
substitution into the left hand site of Eq. (48) we get

timaB+ = IDIL X!, By + (49)
~ -1

+ (b — t) (X4 B XL X B 0, X By, (50)

- G+H+Y;)+, (51)

= fypvmd (52)

where

Yo, =X\ By (53)
is the np, x 1 vector of theoretical predictions, i.e. predictions which are
based on the true (but unknown) vector of regression parameters 8. Look-
ing at Egs. (51) and (35) it can be seen immediately that the former corre-
sponds to the tAymmd i.e. the modified direct GREG estimator of theoretical
predictions y,(z) over D, where

yp(z) = X' (x) B4+ (54)
Based on Egs. (48) and (52) it is obvious that the variance of fy, nq is zero
because the estimator always equals the total of theoretical predictions t,,
in D. In the following part it will be explained how this property can be used
to derive an approximate variance estimator for the modified direct GREG.

Let’s express fy,mq in terms of theoretical predictions y,(z) and (also
theoretical) residuals e(x) based on the following relations

y(x) = yp(z) + e(x) (55)
Y =Ypi +Ey (56)

Substituting the right hand side of Eq. (56) into Eq. (35) we arrive at

ty,md = G+H+ |:Y;)+ + E/+] ) (57)
= G,ILLY,, + G I, E, (58)
= tAyp,md + fe,md (59)



Consequently for the variance of f%md we can write

V(tyma) = V(ty,ma) + V(tema) + C(ty, ma> fe.ma)- (60)
Taking Eqgs. (48) and (51) into account we have

A~

V(ty,ma) = V(ty,) =0 (61)
and further also

C(ty, mds te;ma) = Clty,, tema) =0 (62)
The variance V(tAymd) is then given as the variance of the modified direct
GREG estimator of the total of theoretical residuals in D.

V(tymd) = V(tema)- (63)

Obviously and unfortunately this result can’t be used for practical work
because we have expressed the variance of modified diret GREG by the
variance of another modified direct GREG. In addition, theoretical residuals
are generally unknown. In practice, the estimator V(fymd) of the variance
of fymd shown in Eq. (46) is obtained by replacing the vector of theoretical
residuals E_ by sample residuals E, and neglecting the actual dependence
of g-weights (~}+ on particular sample(s). In other words it is supposed that
the product g(z)é(x) in Eq. (47) depends only on the particular sample
point z and not on any other point(s), which were actually selected or could
be selected from D if we repeated the sampling (in the design-based sense).
Under this assumption tAw, D, is a one-phase estimator and its variance can
be calculated accordingly i.e. according to Eq. (30) in section 3.1.

Zero estimate of total residuals: If there is a constant column vector v
fulfilling condition expressed by Eq. (64), the SREG and synthetic estimators
are equal at the level of D. In other words the estimator fe, p, of the total
of residuals in D equals zero.

o?(z) = vV'X(z) (64)

Proof and further details can be found in [Rao, 2003, chapter 2, page 14]
or in [Sarndal et al. , 2003, chapter 6, pages 231 and 232]. The proof given
by Sérndal et al. [2003] is now reproduced for shake of completeness of this
methodology. Let’s start with the equation

£67D+ = £y7D+ - {s\y;lhD#» (65)
showing the one-phase total estimator of regression residuals as the difference
of two total estimators - one for the study variable y and the other for its

19



predictions y,. The three one-phase total estimators are calculated for D
i.e. the region where the respective regression model is parameterized.

It can be shown that under the condition (64) the one-phase estimator £, p,
equals ¢y p,

byppy = | Y X\ g, (66)

S| 2 e |
e
—1
e XX X ()X () X(2)Y (2)
N L P | | 2 Pore | 2 2w
€Dy xeDy xeDy
o X@Y() - VX @Y ()
=7 L ) T 2 oXon()
€Dy zeDy
= Z };((j)):tA%D+
=<

Hence, the total estimator f& p, must be zero, and the proof is completed.
Condition (64) holds for some frequently used linear models used for model-
assisted estimation:

e models with an intercept term and constant variance o*(z) = o>

e ratio estimator i. e. models with just one auxiliary variable z(x) with-
2

out the intercept and variance o?(z) = o2x(x)
e post-stratification i.e. models including one or more categorial auxil-
iary variables with an error variance being linear combination of these

Modified direct GREG for cluster designs

In case sampling plots are clustered (grouped) into so called clusters of a
fixed geometry (but not necessarily orientation) the approach outlined above
should be modified. Unless cluster level edge-effects are compensated at each
single geographical domain D (cell) separately, the estimation using above
formulas would lead to biased estimators.

Unfortunately an explicit compensation of edge-effects due to clusters (e.g.
by mirroring, walk-through, vector-walk or similar method) would lead to

20



geographically non-additive estimates of totals. In other words the estimate
of total for the whole D would not match the sum of estimates for any of its
complementary geographical partitions. However, geographical additivity is
very appreciated from the end user? as well as analyst perspective?.

The modified approach described bellow retains the geographical additivity
of totals at the level of D, s well as other good properties of the modified
direct GREG (i.g. calibration property). At this point, it is also worth to
mention that all clusters having at least one sample plot located in Dy enter
the below described calculations.

Tract level local density is defined by Eq. (28) in section 3.1. The same
definition will also be used in this and following sections but let’s define also
the (tract) density y; p.

k.
ity Lip, (z)yi(z)
k; ’

Yip, () = (67)
where the indicator variable I;p, codes whether the plot 7 lies in D or not.
Finally, for designs using clusters the modified direct GREG estimator can
be expressed by

tymar = LIl Yip +
2 -1
+ (tx — &) [Xip, I Xip, | Xep, B4+ Yip,,  (68)
or equivalently by
tymar = LIl Yip + A G, JL Yip (69)
where

Itp is an 1 x np, row vector of indicator values Iip(z) coding whether
particular cluster with reference point (origin) at sample point x be-
longs to D or not. Value 1 codes the situation when at least one plot
of cluster is found within D. In any other case the value of I;p(x) is
ZETo.

Yip isan 1 X np, row vector of cluster level local densities y; p(x)

Xtp, is a p x np, matrix composed by np, column vectors X¢p, (x) of
dimension p x 1, the elements of which correspond to cluster level
densities of p auxiliaries, defined in direct analogy to y;p, (z) (i.e.
local densities are zeroed on plots outside D, before the aggregation
at cluster level is performed).

2The sum of estimates over all mutually exclusive but complementary subsets of D,
exactly equals the modified direct GREG estimate for D .

3 A possibility to implement specific quality control measures namely to check whether
additivity between subsets and the whole is fulfilled.
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Yip, isan 1 x np, row vector of cluster level local densities y;p, (x)
G Biy 18 @ap X mp, matrix used just for typing convenience

The vector tx of one-phase estimators of totals of the auxiliaries in D is

calculated according to
tx = LpIl, X|p, (70)

where X¢p is p X np, matrix composed by np, column vectors (dimension
p x 1) of auxiliary densities X¢p(z), the elements of which are defined in a
direct analogy to y:p(z) (i.e. for plots outside D local densities are set to
zero before cluster level density is calculated).

Variance of f%mdt can be estimated as variance of a one-phase estimator of
total {5 p, of a density ¢(z) in Dy

A A A~

V(Eymar) = V(ls,0.)- (71)
Estimator £¢t7 D, is expressed by
2 ¢(x)
toy, Dy = Z @ = Z w(x)p(z) (72)
el D

and the corresponding density ¢(z) by

¢(z) = Iip(z)ép(x) + A} G, (2)én, (2), (73)

where Gg, 4(x) isap x 1 column vector of the matrix G, 4 corresponding
to a cluster established at sample point x. The cluster-level residuals é;p ()
and ép, (x) are defined by

ki 1 5.
fip(a) = 2= 1D &)&(z) (74)
j
= yn(z) — Xip (@)Bet = yip (@) — ypp (@)
and
ki 1 5.
e, (a) = ZE DDA (75)
J
=yp, () — X;D+(~’U)Bt+ = Ytp, () — Yptp, (),
where é;(x) is used for plot level residuals
éi(x) = yi(w) = X'i() By (76)
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The terms yp:p(x) and y,ep4(z) are the corresponding cluster-level model
predictions.

In Egs. (74), (75) and (76) the index i identifies a particular plot, y;(x)
is plot level local density, X;(z) is p X 1 column vector of auxiliary local
densities z;(z) sampled at plot i, Bt+ is p x 1 column vector of empirical
regression coefficients obtained through

N -1
,Bt-i- = [XtD+2+H+X{;D+] XtD+2+H+Y;’,D+ (77)
or equivalently by

Biy = Gp, T Y} . (78)

The elements of 3 i.e. the diagonal matrix of inverse variances can be set
in a way which guarantees zero value of the total estimate tAQ p.,. of residuals
in the whole D, . To achieve this property each diagonal element of ¥ is
set to

k2 k2
Y jlx,z) = — =1 (79)
Sy Lip, (z) (@)

where m(x) corresponds to the number of plots of the respective cluster
which are located inside the parametrization area D,. The symbol k; is
again the nominal cluster size (number of plots) in stratum j. The justifi-
cation is based on the assumption that the variance of cluster level errors of
the regression model follows

o2 ki

o?(z) = 2 Lip, (x), (80)

J i=1

noting that each cluster-level prediction y,:p, (z) is influenced by a sum of
up to k; random errors which are (for simplicity reasons) supposed to be
mutually independent with a constant variance 2. The term (variance) o
is not part of the X, (z,x) elements because it is a constant that cancels
out between the inverse matrix and the following term in Eq. (43). In other
words it has no influence on the estimate of parameters of the internally

used linear regression model.

Notes:

1. For the commonly used regression models (e.g. linear model with in-
tercept, or a combination of metric variable(s) and post-stratification
without intercept) a constant vector v according to Eq. (64) can be
designed combining zeros and o2/ k;. In the special case of post-
stratification the term o2 /k; is used at every position of v.
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2. This construction of ¥ and the existence of corresponding vectors v
guarantees that the estimate of total residuals for the whole D, is
always zero even if clusters are used. Hence we have an exact (not
only approximate) equality of model-assisted and synthetic estimators
of total.

3. For design that use no clusters 3 should be constructed as an identity
matrix unless there is a (good) reason to use other specific weights.

4. The formulas of this section can directly be applied even if samples
come from several strata, with different sampling designs, which may
or may not use clusters or single plots.

5. According to this methodology it is not necessary to calculate total es-
timates separately for each stratum encroaching the boundary of given
cell. However, concerning variance estimation, nFIESTA implementa-
tion follows structure of strata, see Eq. (30) in section 3.1.

4 Estimation of ratios

A number of target parameters can be expressed as the R; 2 i.e. a ratio of
two totals ¢; and ¢2 (or equivalently mean values) according to Eq. (81).

tq
Rio

2= (81)

The estimator ]?172 of Ry 2 can be obtained as the ratio of two total estima-
tors 01 (for ¢1) and 62 (for to).
4
R1’2 - =< .
D)
Estimators 6; and 05 can be of the same or of different types with respect to
using or not using auxiliaries. In other words each of the two may correspond
either to single-phase estimator of total according to Eq. (29) in section 3.1
or to the modified direct estimator (using wall-to-wall auxiliaries) expressed
by Eq. (69) in section 3.2.
For shake of variance estimation the ratio Ry 2 can be approximated by
R%’ 2) applying Taylor’s linearisation technique while neglecting the 2nd and
higher order terms

(82)

(apz) _ 1 z(z)
R =R — 83
1,2 1,2 + ' meisg (z)’ (83)
i
=Rip+ —, (84)
to
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where £, is a single-phase total of a residual variable z(z) the definition of
which depends on the type of estimator in the nominator and denominator
of Ry 2. Following options are possible:

2(z) = yip (@) + yip () Ryz, (85)
2(z) = ¢1(x) + da(2) Ry 2, (86)
2(x) = ¢1(2) + yip () Ru2. (87)
2(z) = yip (@) + pa(2) Rua, (88)

where the first is used when both 6, as well as 65 are single-phase estima-
tors of total, the second in case both estimators correspond to the modified
direct GREG, the third if 0 is a modified direct while 65 is a single-phase
estimator, and the last option is an analogy to the third with the estima-
tor types just switched between the nominator and denominator of ]?172.
Local densities corresponding to the nominator and and denominator are
distinguished by indexes (1 for the nominator, 2 for the denominator). The
terms ¢1 and ¢9 respectively are defined by Eq. (73) in section 3.2.

The variance V(R ) is estimated by an approximate formula
o ey Lo
V(Rip) ~ V(RSY) ~ V(L) (89)

while V(fz) is calculated according to Eq. (30) in section 3.1 by substituting
ytp(x) by the residual local density z(x) of the corresponding type.

Notes:

e Except the first case represented by Eq. (85) variance calculation in-
volves all sample plots (as well as clusters and strata to which these
plots belong) found in the parametrisation area D,. Only in the case
of the single-phase ratio the calculation is restricted to plots located
in the estimation cell.

e Although nFIESTA implements all options of Rl’g with respect to
the type of estimator in the nominator and the denominator it is not
recommended to combine single-phase and modified direct GREG es-
timators. Furthermore, when two modified direct estimators define
the ratio it is not recommended to use (very) different working models
in the nominator and denominator. In all these cases a significant loss
of precision is expected because the covariance between these (very)
different estimators is decreasing.
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e The precision of a ratio defined through single-phase estimators is
practically the same or even better compared to a ratio of two (mod-
ified direct) GREGs. However because the (modified direct) GREG
estimators of total are often more precise that their single-phase coun-
terparts this type of ratio estimator can be useful at least from the
user perspective - because it is consistent with the two GREGs which
are likely to be published. In addition, if the working models in the
nominator and denominator of the ratio are similar or even the same,
the precision may be at least as good as the precision of the alternative
single-phase ratio.
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