Estimation of a difference of two ratios under the infinite population approach to NFI sampling

Radim Adolt

October 13, 2017

Let's define two ratio estimators \hat{R}_{12} and \hat{R}_{34}

$$\hat{R}_{12} = \frac{\hat{T}_{y_1}}{\hat{T}_{y_2}} \qquad \qquad \hat{R}_{34} = \frac{\hat{T}_{y_3}}{\hat{T}_{y_4}},\tag{1}$$

where \hat{T}_{y_1} , \hat{T}_{y_2} , \hat{T}_{y_3} and \hat{T}_{y_4} are (one-phase) estimators of totals T_{y_1} , T_{y_2} , T_{y_3} and T_{y_4} of functions $y_1(x)$, $y_2(x)$, $y_3(x)$ and $y_4(x)$ values of which are observable at any point x of an infinite population of points (a continuum). By definition,

$$T_{y_k} = \int_D y(x) dx, \tag{2}$$

where T_{y_k} is a total of an arbitrary function $y_k(x)$ of local density corresponding to particular variable denoted by lower index k. The ratio estimators \hat{R}_{12} and \hat{R}_{34} can be equivalently defined by (spatial) means instead of totals.

In case n_D sample points are selected uniformly and independently in a geographical domain D (URS, Uniform Random Sampling) variance of each of the two ratio estimators can be obtained by an approximate formula

$$\hat{\mathbb{V}}_{URS}(\hat{R}_{kl}) = \frac{n_D^2 \left[\widehat{Z}_{kl}^2 - \hat{Z}_{kl}^2\right]}{(n_D - 1) \left[\sum_{\substack{x \in S \\ x \in D}} y_l(x)\right]^2},\tag{3}$$

where $\widehat{Z}_{kl}^{\widehat{2}}$ and \widehat{Z}_{kl}^{2} are the arithmetic mean of a squared residual variable z_{kl} and the square of the residual variable itself. The residual variable is defined by

$$z_{kl}(x) = y_k(x) - y_l(x)\hat{R}_{kl}.$$
(4)

The mean of squares and square of the mean are evaluated using all (n_D) sample points in the study area D.

It can be easily shown that the arithmetic mean \hat{Z}_{kl} is by definition zero, so Eq. (3) is simplified to

$$\hat{\mathbb{V}}_{URS}\left(\hat{R}_{kl}\right) = \frac{n_D \sum_{x \in D} z_{kl}^2(x)}{(n_D - 1) \left[\sum_{\substack{x \in D \\ x \in D}} y_l(x)\right]^2}.$$
(5)

Now, imagine that our parameter to estimate is R_{δ} i.e. the difference of two ratios defined below.

$$R_{\delta} = R_{12} - R_{34} \tag{6}$$

Trivially an approximate point estimator \hat{R}_{δ} of R_{δ} can be obtained by

$$\hat{R}_{\delta} = \hat{R}_{12} - \hat{R}_{34},\tag{7}$$

which is a mere difference of two ratio estimators. Obviously, the key question here is how to estimate the variance of \hat{R}_{δ} .

Variance of a sum of two random quantities Y_1 and Y_2 is defined as

$$\mathbb{V}(Y_1 + Y_2) = \mathbb{V}(Y_1) + \mathbb{V}(Y_2) + 2\mathbb{C}(Y_1, Y_2), \tag{8}$$

where $\mathbb{C}(Y_1, Y_2)$ is the covariance between Y_1 and Y_2 . In a direct analogy to Eq. (8) the variance of a difference can be derived using an equality $Y_1 - Y_2 = Y_1 + (-Y_2)$. Following relationships hold the variances and covariances

$$\mathbb{V}(Y_2) = \mathbb{V}(-Y_2) \tag{9}$$

$$\mathbb{C}(Y_1, -Y_2) = -\mathbb{C}(Y_1, Y_2)$$
(10)

Consequently the variance of a difference of Y_1 and Y_2 can be written as

$$\mathbb{V}(Y_1 - Y_2) = \mathbb{V}(Y_1) + \mathbb{V}(Y_2) - 2\mathbb{C}(Y_1, Y_2)$$
(11)

and estimated by

$$\hat{\mathbb{V}}(Y_1 - Y_2) = \hat{\mathbb{V}}(Y_1) + \hat{\mathbb{V}}(Y_2) - 2\hat{\mathbb{C}}(Y_1, Y_2).$$
(12)

The variance of \hat{R}_{δ} can be estimated using

$$\hat{\mathbb{V}}(\hat{R}_{\delta}) = \hat{\mathbb{V}}(\hat{R}_{12}) + \hat{\mathbb{V}}(\hat{R}_{34}) - 2\hat{\mathbb{C}}(\hat{R}_{12}, \hat{R}_{12}).$$
(13)

For the URS design both $\hat{\mathbb{V}}(\hat{R}_{12})$ and also $\hat{\mathbb{V}}(\hat{R}_{34})$ are given by Eq. (5) and the covariance $\hat{\mathbb{C}}(\hat{R}_{12}, \hat{R}_{12})$ can be obtained by

$$\hat{\mathbb{C}}_{URS}(\hat{R}_{12}, \hat{R}_{34}) = \frac{n_D \sum_{\substack{x \in S \\ x \in D}} z_{12}(x) z_{34}(x)}{(n_D - 1) \sum_{\substack{x \in S \\ x \in D}} y_2(x) \sum_{\substack{x \in S \\ x \in D}} y_4(x)}.$$
(14)

Putting all pieces together the estimator of variance of \hat{R}_{δ} under the URS sampling design is expressed as follows

$$\hat{\mathbb{V}}_{URS}(\hat{R}_{\delta}) = \frac{n_D}{n_D - 1} \times \left\{ \frac{\sum_{\substack{x \in D \\ x \in D}} z_{12}^2(x)}{\left[\sum_{\substack{x \in D \\ x \in D}} y_2(x)\right]^2} + \frac{\sum_{\substack{x \in S \\ x \in D}} z_{34}^2(x)}{\left[\sum_{\substack{x \in S \\ x \in D}} y_4(x)\right]^2} - \frac{2\sum_{\substack{x \in S \\ x \in D}} z_{12}(x)z_{34}(x)}{\sum_{\substack{x \in S \\ x \in D}} y_2(x)\sum_{\substack{x \in S \\ x \in D}} y_4(x)} \right\}$$
(15)

) Remarks

1. If tracts¹ are used and local densities have not been modified to compensate for the edge effect due to tracts, calculations should be performed in an extended region D^+ . This corresponds to an area where tract origins were generated (to guarantee that each point of D can be selected by each type of plot considering the given tract geometry and fixed or random

^{2) &}lt;sup>1</sup>Clusters of sample plots with predefined geometry.

tract rotation). In such a case local densities on plots outside D are set to zero and the sample size n_D has to be replaced by n_{D^+} .

2. Alternatively the calculations can be performed using a reduced set of tracts by leaving out those with local densities $y_1(x)$, $y_2(x)$, $y_3(x)$ and $y_4(x)$ simultaneously zero. Using this approach the set of all samples as well as sampling design are defined over a (bounded) geographical domain A^+ with generally unknown map and total area. Sample size n_{A^+} is used instead of n_D or n_{D^+} respectively.