Estimation of a difference of two ratios under the infinite population approach to NFI sampling

Radim Adolt

October 13, 2017

Let's define two ratio estimators \hat{R}_{12} and \hat{R}_{34}

$$
\begin{equation*}
\hat{R}_{12}=\frac{\hat{T}_{y_{1}}}{\hat{T}_{y_{2}}} \quad \hat{R}_{34}=\frac{\hat{T}_{y_{3}}}{\hat{T}_{y_{4}}} \tag{1}
\end{equation*}
$$

where $\hat{T}_{y_{1}}, \hat{T}_{y_{2}}, \hat{T}_{y_{3}}$ and $\hat{T}_{y_{4}}$ are (one-phase) estimators of totals $T_{y_{1}}, T_{y_{2}}$, $T_{y_{3}}$ and $T_{y_{4}}$ of functions $y_{1}(x), y_{2}(x), y_{3}(x)$ and $y_{4}(x)$ values of which are observable at any point x of an infinite population of points (a continuum).
By definition,

$$
T_{y_{k}}=\int_{D} y(x) d x
$$

where $T_{y_{k}}$ is a total of an arbitrary function $y_{k}(x)$ of local density corresponding to particular variable denoted by lower index k. The ratio estimators \hat{R}_{12} and \hat{R}_{34} can be equivalently defined by (spatial) means instead of totals.
In case n_{D} sample points are selected uniformly and independently in a geographical domain D (URS, Uniform Random Sampling) variance of each of the two ratio estimators can be obtained by an approximate formula

$$
\begin{equation*}
\hat{\mathbb{V}}_{U R S}\left(\hat{R}_{k l}\right)=\frac{n_{D}^{2}\left[\widehat{Z_{k l}^{2}}-\hat{\bar{Z}}_{k l}^{2}\right]}{\left(n_{D}-1\right)\left[\sum_{\substack{x \in s \\ x \in D}} y_{l}(x)\right]^{2}} \tag{3}
\end{equation*}
$$

where $\widehat{Z_{k l}^{2}}$ and $\hat{\bar{Z}}_{k l}^{2}$ are the arithmetic mean of a squared residual variable $z_{k l}$ and the square of the residual variable itself. The residual variable is defined by

$$
\begin{equation*}
z_{k l}(x)=y_{k}(x)-y_{l}(x) \hat{R}_{k l} . \tag{4}
\end{equation*}
$$

The mean of squares and square of the mean are evaluated using all (n_{D}) sample points in the study area D.

It can be easily shown that the arithmetic mean $\hat{\bar{Z}}_{k l}$ is by definition zero, so Eq. (3) is simplified to

$$
\begin{equation*}
\hat{\mathbb{V}}_{U R S}\left(\hat{R}_{k l}\right)=\frac{n_{D} \sum_{\substack{x \in s \\ x \in D}} z_{k l}^{2}(x)}{\left(n_{D}-1\right)\left[\sum_{\substack{x \in s \\ x \in D}} y_{l}(x)\right]^{2}} . \tag{5}
\end{equation*}
$$

Now, imagine that our parameter to estimate is R_{δ} i.e. the difference of two ratios defined below.

$$
\begin{equation*}
R_{\delta}=R_{12}-R_{34} \tag{6}
\end{equation*}
$$

Trivially an approximate point estimator \hat{R}_{δ} of R_{δ} can be obtained by

$$
\begin{equation*}
\hat{R}_{\delta}=\hat{R}_{12}-\hat{R}_{34}, \tag{7}
\end{equation*}
$$

which is a mere difference of two ratio estimators. Obviously, the key question here is how to estimate the variance of \hat{R}_{δ}.
Variance of a sum of two random quantities Y_{1} and Y_{2} is defined as

$$
\begin{equation*}
\mathbb{V}\left(Y_{1}+Y_{2}\right)=\mathbb{V}\left(Y_{1}\right)+\mathbb{V}\left(Y_{2}\right)+2 \mathbb{C}\left(Y_{1}, Y_{2}\right) \tag{8}
\end{equation*}
$$

where $\mathbb{C}\left(Y_{1}, Y_{2}\right)$ is the covariance between Y_{1} and Y_{2}. In a direct analogy to Eq. (8) the variance of a difference can be derived using an equality $Y_{1}-Y_{2}=$ $Y_{1}+\left(-Y_{2}\right)$. Following relationships hold the variances and covariances

$$
\begin{gather*}
\mathbb{V}\left(Y_{2}\right)=\mathbb{V}\left(-Y_{2}\right) \tag{9}\\
\mathbb{C}\left(Y_{1},-Y_{2}\right)=-\mathbb{C}\left(Y_{1}, Y_{2}\right) \tag{10}
\end{gather*}
$$

Consequently the variance of a difference of Y_{1} and Y_{2} can be written as

$$
\begin{equation*}
\mathbb{V}\left(Y_{1}-Y_{2}\right)=\mathbb{V}\left(Y_{1}\right)+\mathbb{V}\left(Y_{2}\right)-2 \mathbb{C}\left(Y_{1}, Y_{2}\right) \tag{11}
\end{equation*}
$$

and estimated by

$$
\begin{equation*}
\hat{\mathbb{V}}\left(Y_{1}-Y_{2}\right)=\hat{\mathbb{V}}\left(Y_{1}\right)+\hat{\mathbb{V}}\left(Y_{2}\right)-2 \hat{\mathbb{C}}\left(Y_{1}, Y_{2}\right) \tag{12}
\end{equation*}
$$

The variance of \hat{R}_{δ} can be estimated using

$$
\begin{equation*}
\hat{\mathbb{V}}\left(\hat{R}_{\delta}\right)=\hat{\mathbb{V}}\left(\hat{R}_{12}\right)+\hat{\mathbb{V}}\left(\hat{R}_{34}\right)-2 \widehat{\mathbb{C}}\left(\hat{R}_{12}, \hat{R}_{12}\right) \tag{13}
\end{equation*}
$$

For the URS design both $\hat{\mathbb{V}}\left(\hat{R}_{12}\right)$ and also $\hat{\mathbb{V}}\left(\hat{R}_{34}\right)$ are given by Eq. (5) and the covariance $\widehat{\mathbb{C}}\left(\hat{R}_{12}, \hat{R}_{12}\right)$ can be obtained by

$$
\begin{equation*}
\hat{\mathbb{C}}_{U R S}\left(\hat{R}_{12}, \hat{R}_{34}\right)=\frac{n_{D} \sum_{\substack{x \in s \\ x \in D}} z_{12}(x) z_{34}(x)}{\left(n_{D}-1\right) \sum_{\substack{x \in s \\ x \in D}} y_{2}(x) \sum_{\substack{x \in s \\ x \in D}} y_{4}(x)} . \tag{14}
\end{equation*}
$$

Putting all pieces together the estimator of variance of \hat{R}_{δ} under the URS sampling design is expressed as follows

$$
\begin{align*}
& \hat{\mathbb{V}}_{U R S}\left(\hat{R}_{\delta}\right)=\frac{n_{D}}{n_{D}-1} \times \tag{15}
\end{align*}
$$

Remarks

1. If tracts ${ }^{1}$ are used and local densities have not been modified to compensate for the edge effect due to tracts, calculations should be performed in an extended region D^{+}. This corresponds to an area where tract origins were generated (to guarantee that each point of D can be selected by each type of plot considering the given tract geometry and fixed or random

[^0]tract rotation). In such a case local densities on plots outside D are set to zero and the sample size n_{D} has to be replaced by $n_{D^{+}}$.
2. Alternatively the calculations can be performed using a reduced set of tracts by leaving out those with local densities $y_{1}(x), y_{2}(x), y_{3}(x)$ and $y_{4}(x)$ simultaneously zero. Using this approach the set of all samples as well as sampling design are defined over a (bounded) geographical domain A^{+}with generally unknown map and total area. Sample size $n_{A^{+}}$is used instead of n_{D} or $n_{D^{+}}$respectively.

[^0]: ${ }^{1}$ Clusters of sample plots with predefined geometry

